Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Sci Data ; 11(1): 383, 2024 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-38615064

RESUMO

The rete ovarii (RO) is an epithelial structure that arises during development in close proximity to the ovary and persists throughout adulthood. However, the functional significance of the RO remains elusive, and it is absent from recent discussions of female reproductive anatomy. The RO comprises three regions: the intraovarian rete within the ovary, the extraovarian rete in the periovarian tissue, and the connecting rete linking the two. We hypothesize that the RO plays a pivotal role in ovarian homeostasis and responses to physiological changes. To begin to uncover the nature and function of RO cells, we conducted transcriptomic profiling of the RO. This study presents three datasets, and reports our analysis and quality control approaches for bulk, single-cell, and nucleus-level transcriptomics of the fetal and adult RO tissues using the Pax8-rtTA; Tre-H2B-GFP mouse line, where all RO regions express nuclear GFP. The integration and rigorous validation of these datasets will advance our understanding of the RO's roles in ovarian development, female maturation, and adult female fertility.


Assuntos
Ovário , Transcriptoma , Animais , Feminino , Camundongos , Feto , Perfilação da Expressão Gênica , Ovário/embriologia , Ovário/crescimento & desenvolvimento
2.
bioRxiv ; 2023 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-38077064

RESUMO

Neural organoids derived from human induced pluripotent stem cells (iPSCs) provide a model to study the earliest stages of human brain development, including neurogenesis, neural differentiation, and synaptogenesis. However, neural organoids lack supportive tissues and some non-neural cell types that are key regulators of brain development. Neural organoids have instead been co-cultured with non-neural structures and cell types to promote their maturation and model interactions with neuronal cells. One structure that does not form de novo with neural organoids is the meninges, a tri-layered structure that surrounds the CNS and secretes key signaling molecules required for mammalian brain development. Most studies of meninges-brain signaling have been performed in mice or using two-dimensional (2D) cultures of human cells, the latter not recapitulating the architecture and cellular diversity of the tissue. To overcome this, we developed a co-culture system of neural organoids generated from human iPSCs fused with fetal leptomeninges from mice with fluorescently labeled meninges (Col1a1-GFP). These proof-of-concept studies test the stability of the different cell types in the leptomeninges (fibroblast and macrophage) and the fused brain organoid (progenitor and neuron), as well as the interface between the organoid and meningeal tissue. We test the longevity of the fusion pieces after 30 days and 60 days in culture, describe best practices for preparing the meninges sample prior to fusion, and examine the feasibility of single or multiple meninges pieces fused to a single organoid. We discuss potential uses of the current version of the LMNO fusion model and opportunities to improve the system.

3.
Elife ; 122023 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-37947350

RESUMO

Rhombomeres serve to position neural progenitors in the embryonic hindbrain, thereby ensuring appropriate neural circuit formation, but the molecular identities of individual rhombomeres and the mechanism whereby they form has not been fully established. Here, we apply scMultiome analysis in zebrafish to molecularly resolve all rhombomeres for the first time. We find that rhombomeres become molecularly distinct between 10hpf (end of gastrulation) and 13hpf (early segmentation). While the embryonic hindbrain transiently contains alternating odd- versus even-type rhombomeres, our scMultiome analyses do not detect extensive odd versus even molecular characteristics in the early hindbrain. Instead, we find that each rhombomere displays a unique gene expression and chromatin profile. Prior to the appearance of distinct rhombomeres, we detect three hindbrain progenitor clusters (PHPDs) that correlate with the earliest visually observed segments in the hindbrain primordium that represent prospective rhombomere r2/r3 (possibly including r1), r4, and r5/r6, respectively. We further find that the PHPDs form in response to Fgf and RA morphogens and that individual PHPD cells co-express markers of multiple mature rhombomeres. We propose that the PHPDs contain mixed-identity progenitors and that their subdivision into individual rhombomeres requires the resolution of mixed transcription and chromatin states.


Assuntos
Proteínas de Peixe-Zebra , Peixe-Zebra , Animais , Peixe-Zebra/genética , Estudos Prospectivos , Proteínas de Peixe-Zebra/metabolismo , Rombencéfalo , Cromatina/metabolismo
4.
bioRxiv ; 2023 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-37986846

RESUMO

The rete ovarii (RO) is an epithelial structure that arises during fetal development in close proximity to the ovary and persists throughout adulthood in mice. However, the functional significance of the RO remains elusive, and it has been absent from recent discussions of female reproductive anatomy. The RO comprises three distinct regions: the intraovarian rete (IOR) within the ovary, the extraovarian rete (EOR) in the periovarian tissue, and the connecting rete (CR) linking the EOR and IOR. We hypothesize that the RO plays a pivotal role in maintaining ovarian homeostasis and responding to physiological changes. To uncover the nature and function of RO cells, we conducted transcriptome analysis, encompassing bulk, single-cell, and nucleus-level sequencing of both fetal and adult RO tissues using the Pax8-rtTA; Tre-H2B-GFP mouse line, where all RO regions express nuclear GFP. This study presents three datasets, which highlight RO-specific gene expression signatures and reveal differences in gene expression across the three RO regions during development and in adulthood. The integration and rigorous validation of these datasets will advance our understanding of the RO's roles in ovarian development, female maturation, and adult female fertility.

5.
Diabetes ; 72(9): 1214-1227, 2023 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-37347736

RESUMO

Metformin is used by women during pregnancy to manage diabetes and crosses the placenta, yet its effects on the fetus are unclear. We show that the liver is a site of metformin action in fetal sheep and macaques, given relatively abundant OCT1 transporter expression and hepatic uptake following metformin infusion into fetal sheep. To determine the effects of metformin action, we performed studies in primary hepatocytes from fetal sheep, fetal macaques, and juvenile macaques. Metformin increases AMP-activated protein kinase (AMPK) signaling, decreases mammalian target of rapamycin (mTOR) signaling, and decreases glucose production in fetal and juvenile hepatocytes. Metformin also decreases oxygen consumption in fetal hepatocytes. Unique to fetal hepatocytes, metformin activates stress pathways (e.g., increased PGC1A gene expression, NRF-2 protein abundance, and phosphorylation of eIF2α and CREB proteins) alongside perturbations in hepatokine expression (e.g., increased growth/differentiation factor 15 [GDF15] and fibroblast growth factor 21 [FGF21] expression and decreased insulin-like growth factor 2 [IGF2] expression). Similarly, in liver tissue from sheep fetuses infused with metformin in vivo, AMPK phosphorylation, NRF-2 protein, and PGC1A expression are increased. These results demonstrate disruption of signaling and metabolism, induction of stress, and alterations in hepatokine expression in association with metformin exposure in fetal hepatocytes. ARTICLE HIGHLIGHTS: The major metformin uptake transporter OCT1 is expressed in the fetal liver, and fetal hepatic uptake of metformin is observed in vivo. Metformin activates AMPK, reduces glucose production, and decreases oxygen consumption in fetal hepatocytes, demonstrating similar effects as in juvenile hepatocytes. Unique to fetal hepatocytes, metformin activates metabolic stress pathways and alters the expression of secreted growth factors and hepatokines. Disruption of signaling and metabolism with increased stress pathways and reduced anabolic pathways by metformin in the fetal liver may underlie reduced growth in fetuses exposed to metformin.


Assuntos
Metformina , Gravidez , Feminino , Animais , Ovinos , Metformina/farmacologia , Proteínas Quinases Ativadas por AMP/metabolismo , Hepatócitos/metabolismo , Glucose/metabolismo , Feto/metabolismo , Mamíferos/metabolismo
6.
Dev Cell ; 58(8): 635-644.e4, 2023 04 24.
Artigo em Inglês | MEDLINE | ID: mdl-36996816

RESUMO

The arachnoid barrier, a component of the blood-cerebrospinal fluid barrier (B-CSFB) in the meninges, is composed of epithelial-like, tight-junction-expressing cells. Unlike other central nervous system (CNS) barriers, its' developmental mechanisms and timing are largely unknown. Here, we show that mouse arachnoid barrier cell specification requires the repression of Wnt-ß-catenin signaling and that constitutively active ß-catenin can prevent its formation. We also show that the arachnoid barrier is functional prenatally and, in its absence, a small molecular weight tracer and the bacterium group B Streptococcus can cross into the CNS following peripheral injection. Acquisition of barrier properties prenatally coincides with the junctional localization of Claudin 11, and increased E-cadherin and maturation continues after birth, where postnatal expansion is marked by proliferation and re-organization of junctional domains. This work identifies fundamental mechanisms that drive arachnoid barrier formation, highlights arachnoid barrier fetal functions, and provides novel tools for future studies on CNS barrier development.


Assuntos
Meninges , beta Catenina , Camundongos , Animais , Aracnoide-Máter , Barreira Hematoencefálica , Sistema Nervoso Central , Junções Íntimas
7.
bioRxiv ; 2023 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-36747868

RESUMO

Rhombomeres serve to position neural progenitors in the embryonic hindbrain, thereby ensuring appropriate neural circuit formation, but the molecular identities of individual rhombomeres and the mechanism whereby they form have not been fully established. Here we apply scMultiome analysis in zebrafish to molecularly resolve all rhombomeres for the first time. We find that rhombomeres become molecularly distinct between 10hpf (end of gastrulation) and 13hpf (early segmentation). While the mature hindbrain consists of alternating odd- versus even-type rhombomeres, our scMultiome analyses do not detect extensive odd versus even characteristics in the early hindbrain. Instead, we find that each rhombomere displays a unique gene expression and chromatin profile. Prior to the appearance of distinct rhombomeres, we detect three hindbrain progenitor clusters (PHPDs) that correlate with the earliest visually observed segments in the hindbrain primordium and that represent prospective rhombomere r2/r3 (possibly including r1), r4 and r5/r6, respectively. We further find that the PHPDs form in response to Fgf and RA morphogens and that individual PHPD cells co-express markers of multiple mature rhombomeres. We propose that the PHPDs contain mixed-identity progenitors and that their subdivision into individual mature rhombomeres requires resolution of mixed transcription and chromatin states.

8.
Dev Dyn ; 252(6): 713-727, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36734036

RESUMO

BACKGROUND: Cleft palate is one of the most prevalent birth defects. Mice are useful for studying palate development because of their morphological and genetic similarities to humans. In mice, palate development occurs between embryonic days (E)11.5 to 15.5. Single cell transcriptional profiles of palate cell populations have been a valuable resource for the craniofacial research community, but we lack a single cell transcriptional profile for anterior palate at E13.5, at the transition from proliferation to shelf elevation. RESULTS: A detailed single cell RNA sequencing analysis reveals heterogeneity in expression profiles of the cell populations of the E13.5 anterior palate. Hybridization chain reaction RNA fluorescent in situ hybridization (HCR RNA FISH) reveals epithelial populations segregate into layers. Mesenchymal populations spatially segregate into four domains. One of these mesenchymal populations expresses ligands and receptors distinct from the rest of the mesenchyme, suggesting that these cells have a unique function. RNA velocity analysis shows two terminal cell states that contribute to either the proximal or distal palatal regions emerge from a single progenitor pool. CONCLUSION: This single cell resolution expression data and detailed analysis from E13.5 anterior palate provides a powerful resource for mechanistic insight into secondary palate morphogenesis for the craniofacial research community.


Assuntos
Fissura Palatina , Palato , Humanos , Camundongos , Animais , Hibridização in Situ Fluorescente , Fissura Palatina/metabolismo , Morfogênese/genética , RNA/metabolismo , Mesoderma , Regulação da Expressão Gênica no Desenvolvimento
9.
Res Sq ; 2023 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-38168409

RESUMO

Neural organoids derived from human induced pluripotent stem cells (iPSCs) provide a model to study the earliest stages of human brain development, including neurogenesis, neural differentiation, and synaptogenesis. However, neural organoids lack supportive tissues and some non-neural cell types that are key regulators of brain development. Neural organoids have instead been co-cultured with non-neural structures and cell types to promote their maturation and model interactions with neuronal cells. One structure that does not form de novo with neural organoids is the meninges, a tri-layered structure that surrounds the CNS and secretes key signaling molecules required for mammalian brain development. Most studies of meninges-brain signaling have been performed in mice or using two-dimensional (2D) cultures of human cells, the latter not recapitulating the architecture and cellular diversity of the tissue. To overcome this, we developed a co-culture system of neural organoids generated from human iPSCs fused with fetal leptomeninges from mice with fluorescently labeled meninges (Col1a1-GFP). These proof-of-concept studies test the stability of the different cell types in the leptomeninges (fibroblast and macrophage) and the fused brain organoid (progenitor and neuron), as well as the interface between the organoid and meningeal tissue. We test the longevity of the fusion pieces after 30 days and 60 days in culture, describe best practices for preparing the meninges sample prior to fusion, and examine the feasibility of single or multiple meninges pieces fused to a single organoid. We discuss potential uses of the current version of the LMNO fusion model and opportunities to improve the system.

10.
iScience ; 25(6): 104444, 2022 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-35733848

RESUMO

Skeletal muscle stem cells, or satellite cells (SCs), are essential to regenerate and maintain muscle. Quiescent SCs reside in an asymmetric niche between the basal lamina and myofiber membrane. To repair muscle, SCs activate, proliferate, and differentiate, fusing to repair myofibers or reacquiring quiescence to replenish the SC niche. Little is known about when SCs reacquire quiescence during regeneration or the cellular processes that direct SC fate decisions. We find that most SCs reacquire quiescence 5-10 days after muscle injury, following differentiation and fusion of most cells to regenerate myofibers. Single-cell sequencing of myogenic cells in regenerating muscle identifies SCs reacquiring quiescence and reveals that noncell autonomous signaling networks influence SC fate decisions during regeneration. SC transplantation experiments confirm that the regenerating environment influences SC fate. We define a window for SC repopulation of the niche, emphasizing the temporal contribution of the regenerative muscle environment on SC fate.

11.
Int J Pharm Pract ; 30(4): 367-376, 2022 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-35640122

RESUMO

OBJECTIVES: Development of new patient-facing roles for pharmacists and reports of poor patient care in the UK has led to questions concerning how pharmacists develop professionalism. This study explored how professionalism is developed and assessed during the post-graduation year in practice or pre-registration placement. The perspectives of two staff at the professional regulator UK (General Pharmaceutical Council), eight service users, seven pre-registration trainees, and 12 pre-registration tutors were recruited. METHODS: An interpretative paradigm was adopted. Data collection involved a semi-structured group interview, focus groups and a qualitative e-questionnaire. An inductive reasoning approach informed data analysis and interpretation. KEY FINDINGS: All groups provided insights into examples of transformative moments which potentiated professionalism development, the first being awarding the 'pre-registration trainee' title. All groups reported that contact with patients and trainee reflection aided professionalism maturation from a 'self-centred student' to becoming a 'responsible professional' where more than 'doing' is demanded. Furthermore, tutors stated the rate of professionalism development was affected by the sector of training and its opportunities for patient contact. Tutors felt they alone, not the registration exam, assessed professionalism using a variety of assessment approaches. Importantly, no tutors reported patient involvement in the assessment of trainees' professionalism, yet service users expected to be involved. CONCLUSIONS: Transformative moments and maturation periods during pre-registration training develop professionalism and enable trainees to 'become' a pharmacist. Careful planning of placements to optimise professionalism development across pharmacy sectors and consistent patient involvement in assessing trainee professionalism is recommended.


Assuntos
Educação em Farmácia , Farmácia , Inglaterra , Humanos , Farmacêuticos , Profissionalismo
12.
Nat Commun ; 13(1): 1677, 2022 03 30.
Artigo em Inglês | MEDLINE | ID: mdl-35354817

RESUMO

The mesothelium lines body cavities and surrounds internal organs, widely contributing to homeostasis and regeneration. Mesothelium disruptions cause visceral anomalies and mesothelioma tumors. Nonetheless, the embryonic emergence of mesothelia remains incompletely understood. Here, we track mesothelial origins in the lateral plate mesoderm (LPM) using zebrafish. Single-cell transcriptomics uncovers a post-gastrulation gene expression signature centered on hand2 in distinct LPM progenitor cells. We map mesothelial progenitors to lateral-most, hand2-expressing LPM and confirm conservation in mouse. Time-lapse imaging of zebrafish hand2 reporter embryos captures mesothelium formation including pericardium, visceral, and parietal peritoneum. We find primordial germ cells migrate with the forming mesothelium as ventral migration boundary. Functionally, hand2 loss disrupts mesothelium formation with reduced progenitor cells and perturbed migration. In mouse and human mesothelioma, we document expression of LPM-associated transcription factors including Hand2, suggesting re-initiation of a developmental program. Our data connects mesothelium development to Hand2, expanding our understanding of mesothelial pathologies.


Assuntos
Mesotelioma , Peixe-Zebra , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Epitélio/metabolismo , Mesotelioma/genética , Camundongos , Fatores de Transcrição/metabolismo , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo
13.
Blood ; 139(14): 2240-2251, 2022 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-35143643

RESUMO

von Willebrand factor (VWF) plays a key role in normal hemostasis, and deficiencies of VWF lead to clinically significant bleeding. We sought to identify novel modifiers of VWF levels in endothelial colony-forming cells (ECFCs) using single-cell RNA sequencing (scRNA-seq). ECFCs were isolated from patients with low VWF levels (plasma VWF antigen levels between 30 and 50 IU/dL) and from healthy controls. Human umbilical vein endothelial cells were used as an additional control cell line. Cells were characterized for their Weibel Palade body (WPB) content and VWF release. scRNA-seq of all cell lines was performed to evaluate for gene expression heterogeneity and for candidate modifiers of VWF regulation. Candidate modifiers identified by scRNA-seq were further characterized with small-interfering RNA (siRNA) experiments to evaluate for effects on VWF. We observed that ECFCs derived from patients with low VWF demonstrated alterations in baseline WPB metrics and exhibit impaired VWF release. scRNA-seq analyses of these endothelial cells revealed overall decreased VWF transcription, mosaicism of VWF expression, and genes that are differentially expressed in low VWF ECFCs and control endothelial cells (control ECs). An siRNA screen of potential VWF modifiers provided further evidence of regulatory candidates, and 1 such candidate, FLI1, alters the transcriptional activity of VWF. In conclusion, ECFCs from individuals with low VWF demonstrate alterations in their baseline VWF packaging and release compared with control ECs. scRNA-seq revealed alterations in VWF transcription, and siRNA screening identified multiple candidate regulators of VWF.


Assuntos
Doenças de von Willebrand , Fator de von Willebrand , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Análise de Célula Única , Corpos de Weibel-Palade/metabolismo , Doenças de von Willebrand/metabolismo , Fator de von Willebrand/metabolismo
14.
J Clin Transl Sci ; 5(1): e149, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34527289

RESUMO

The shift in learning environments due to the COVID-19 pandemic necessitates a closer look at course design, faculty approaches to teaching, and student interaction, all of which may predict learner achievement and satisfaction. Transitioning to an online environment requires the reinvention, reimagining, and applying of "e-flavors" of general learning theory. With this shift to online learning comes the opportunity for misunderstandings and "myths" to occur, which may stand in the way of faculty embracing online learning and fully realizing its potential. This article seeks to address several myths and misconceptions that have arisen in higher education during the rapid shift to online teaching and learning. While not comprehensive, these myths represent a snapshot of common challenges. These are we can transfer our in-person course design to online; adult learners do not need an empathetic approach; and online teaching and learning is socially isolating. Through an appreciative inquiry framework, we present each myth in the context of relevant literature and invite faculty with varied online teaching experience to share their own case studies that illustrate how they have "busted" these myths with the goal to identify existing examples of locally effective practices for the express purpose of replication that leads to positive change.

15.
Dev Biol ; 479: 37-50, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34303700

RESUMO

Ventral spinal cord progenitor cells, which express the basic helix loop helix transcription factor Olig2, sequentially produce motor neurons and oligodendrocyte precursor cells (OPCs). Following specification some OPCs differentiate as myelinating oligodendrocytes while others persist as OPCs. Though a considerable amount of work has described the molecular profiles that define motor neurons, OPCs, and oligodendrocytes, less is known about the progenitors that produce them. To identify the developmental origins and transcriptional profiles of motor neurons and OPCs, we performed single-cell RNA sequencing on isolated pMN cells from embryonic zebrafish trunk tissue at stages that encompassed motor neurogenesis, OPC specification, and initiation of oligodendrocyte differentiation. Downstream analyses revealed two distinct pMN progenitor populations: one that appears to produce neurons and one that appears to produce OPCs. This latter population, called Pre-OPCs, is marked by expression of GS Homeobox 2 (gsx2), a gene that encodes a homeobox transcription factor. Using fluorescent in situ hybridizations, we identified gsx2-expressing Pre-OPCs in the spinal cord prior to expression of canonical OPC marker genes. Our data therefore reveal heterogeneous gene expression profiles among pMN progenitors, supporting prior fate mapping evidence.


Assuntos
Diferenciação Celular/fisiologia , Células-Tronco Neurais/citologia , Medula Espinal/embriologia , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Linhagem da Célula , Perfilação da Expressão Gênica/métodos , Regulação da Expressão Gênica no Desenvolvimento/genética , Proteínas Hedgehog/metabolismo , Neurônios Motores/citologia , Proteínas do Tecido Nervoso/metabolismo , Neurogênese/fisiologia , Oligodendroglia/citologia , Análise de Célula Única/métodos , Análise Espaço-Temporal , Fatores de Transcrição/metabolismo , Transcriptoma/genética , Peixe-Zebra/embriologia , Proteínas de Peixe-Zebra/genética
16.
Future Healthc J ; 8(1): e179-e182, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33791505

RESUMO

Anticipatory/advance care planning (ACP) conversations are often known to be challenging and should be undertaken sensitively. A qualitative service evaluation was undertaken with the elderly care department at The Leeds Teaching Hospitals NHS Trust by medical students to explore the thoughts and experiences of foundation doctors. ACP discussions include consideration of future treatment options and preferences; however, foundation doctors were not confident to discuss issues beyond resuscitation status. The key themes identified include understanding of and confidence in ACP, variation across specialty and medical educational needs. The analysis highlights a further need for qualitative research into prevalent attitudes towards ACP discussions across the range of specialties.

17.
Dev Cell ; 54(1): 43-59.e4, 2020 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-32634398

RESUMO

The meninges are a multilayered structure composed of fibroblasts, blood and lymphatic vessels, and immune cells. Meningeal fibroblasts secrete a variety of factors that control CNS development, yet strikingly little is known about their heterogeneity or development. Using single-cell sequencing, we report distinct transcriptional signatures for fibroblasts in the embryonic dura, arachnoid, and pia. We define new markers for meningeal layers and show conservation in human meninges. We find that embryonic meningeal fibroblasts are transcriptionally distinct between brain regions and identify a regionally localized pial subpopulation marked by the expression of µ-crystallin. Developmental analysis reveals a progressive, ventral-to-dorsal maturation of telencephalic meninges. Our studies have generated an unparalleled view of meningeal fibroblasts, providing molecular profiles of embryonic meningeal fibroblasts by layer and yielding insights into the mechanisms of meninges development and function.


Assuntos
Encéfalo/metabolismo , Fibroblastos/metabolismo , Meninges/metabolismo , Transcriptoma , Animais , Encéfalo/citologia , Encéfalo/embriologia , Cristalinas/genética , Cristalinas/metabolismo , Humanos , Meninges/citologia , Meninges/embriologia , Camundongos , Camundongos Endogâmicos C57BL , RNA-Seq , Análise de Célula Única
18.
Development ; 147(16)2020 08 27.
Artigo em Inglês | MEDLINE | ID: mdl-32680935

RESUMO

Spinal cord pMN progenitors sequentially produce motor neurons and oligodendrocyte precursor cells (OPCs). Some OPCs differentiate rapidly as myelinating oligodendrocytes, whereas others remain into adulthood. How pMN progenitors switch from producing motor neurons to OPCs with distinct fates is poorly understood. pMN progenitors express prdm8, which encodes a transcriptional repressor, during motor neuron and OPC formation. To determine whether prdm8 controls pMN cell fate specification, we used zebrafish as a model system to investigate prdm8 function. Our analysis revealed that prdm8 mutant embryos have fewer motor neurons resulting from a premature switch from motor neuron to OPC production. Additionally, prdm8 mutant larvae have excess oligodendrocytes and a concomitant deficit of OPCs. Notably, pMN cells of mutant embryos have elevated Shh signaling, coincident with the motor neuron to OPC switch. Inhibition of Shh signaling restored the number of motor neurons to normal but did not rescue the proportion of oligodendrocytes. These data suggest that Prdm8 regulates the motor neuron-OPC switch by controlling the level of Shh activity in pMN progenitors, and also regulates the allocation of oligodendrocyte lineage cell fates.This article has an associated 'The people behind the papers' interview.


Assuntos
Diferenciação Celular , Proteínas de Ligação a DNA/metabolismo , Proteínas Hedgehog/metabolismo , Histona Metiltransferases/metabolismo , Neurônios Motores/metabolismo , Células-Tronco Neurais/metabolismo , Oligodendroglia/metabolismo , Transdução de Sinais , Animais , Proteínas de Ligação a DNA/genética , Proteínas Hedgehog/genética , Histona Metiltransferases/genética , Camundongos , Camundongos Transgênicos , Neurônios Motores/citologia , Células-Tronco Neurais/citologia , Oligodendroglia/citologia
19.
Oncogene ; 39(12): 2641, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31969682

RESUMO

The original version of this Article omitted the following from the Acknowledgements: This work was supported by the Luke's Army Pediatric Cancer Research Fund St. Baldrick's Scholar Award. This has now been corrected in both the PDF and HTML versions of the Article.

20.
Oncogene ; 39(11): 2305-2327, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31844250

RESUMO

High-grade gliomas (HGG) afflict both children and adults and respond poorly to current therapies. Epigenetic regulators have a role in gliomagenesis, but a broad, functional investigation of the impact and role of specific epigenetic targets has not been undertaken. Using a two-step, in vitro/in vivo epigenomic shRNA inhibition screen, we determine the chromatin remodeler BPTF to be a key regulator of adult HGG growth. We then demonstrate that BPTF knockdown decreases HGG growth in multiple pediatric HGG models as well. BPTF appears to regulate tumor growth through cell self-renewal maintenance, and BPTF knockdown leads these glial tumors toward more neuronal characteristics. BPTF's impact on growth is mediated through positive effects on expression of MYC and MYC pathway targets. HDAC inhibitors synergize with BPTF knockdown against HGG growth. BPTF inhibition is a promising strategy to combat HGG through epigenetic regulation of the MYC oncogenic pathway.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA